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It is the conventional wisdom that the correlation length for the XY model with linear damping should
asymptotically grow diffusively as the square root of time after a quench into the ordered phase. This
implies that the defect density p should decay with time as p <t ~” with the scaling exponent v=1. We
present evidence, by numerically integrating the equations of motion for a two-dimensional XY model,
for a logarithmic correction to this scaling which makes it difficult to reach the asymptotic regime
v=—d(Inp)/d(Int)=1. Even after the defect density has decayed by three orders of magnitude
v=0.91, which still deviates by 10% from the asymptotic value.

PACS number(s): 64.60.Cn

There is considerable interest in the dynamics of the
defects produced during a symmetry-breaking phase
transition [1,2]. One such system is the planar, time-
dependent Ginzburg-Landau model having SO(2) symme-
try. The planar XY model, which describes the dynamics
of spins lying in the xy plane, is a discretized approxima-
tion of this Ginzburg-Landau model. When the system is
quenched from the high-temperature, disordered phase to
the low-temperature, ordered phase the continuous sym-
metry SO(2) of the high-temperature phase is broken to
the Z,; symmetry of the low-temperature phase [3,4].
The topological defects generated in this temperature
quench are of codimension two (thus pointlike for the
two-dimensional system studied below) and have integral
winding numbers. If the spins are allowed to relax via
linear damping from an initially random configuration
one expects the system to anneal diffusively, and the
correlation length £ to grow as the square root of time
[5,6]. This implies that the defect density p should scale
as p~E& 2~t~" where v=1. Several numerical studies
have been done which purport to have seen this scaling
[5,7]. We report on numerical studies which cover more
decades in time than previous studies. We present evi-
dence for a logarithmic correction to the scaling which
suggests that the system approaches v=1 scaling very
slowly. Even after the defect density has decayed by
three orders of magnitude the scaling exponent, defined
as v=—d(Inp)/dInt), has only increased from 0.75 to
0.91, still 10% short of the asymptotic scaling v=1.

Before presenting our numerical work we present an
argument for the expected coarsening behavior for the
time-dependent Ginzburg-Landau model. The time-
dependent Ginzburg-Landau model with a vector order
parameter n=(nx,ny ) has the form

on _ 8F
Y3 = on +7, (1)
where y is the damping constant (assumed to be real and
positive). 7 is Gaussian white noise having zero mean
and, according to the fluctuation-dissipation theorem, the
moments
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where T is the equilibrium temperature. We take the free
energy to have the form

K A
F= [dr 5 @anpl+ =17, 3)

where k is an elastic constant, A is the strength of the
nonlinearity that drives n towards unit length, and it is
understood that the indices a and B are summed over fol-
lowing the Einstein convention of summing over repeated
indices. The field equation (equation of motion) generat-
ed by substituting Eq. (2) into Eq. (1) is

on
LaFY
In the following analysis we initially consider the 7"=0

case, where the Langevin noise is zero. Equation (4) has
time-independent solutions of the form

n=n(r)[cos(s¢)i+sin(sp)j], (5)

=xkVn—A(n’—1)n+79 . 4)

where i and j are Cartesian unit vectors, the winding
number s takes on integer values, and r and ¢ are the usu-
al polar coordinate variables, r=(x2+y?)!/2 and
¢=tan (y/x). The length n(r) of the vector n ap-
proaches unity for large r and goes to zero as r goes to
zero. The length scale, or core radius R, at which n(r)
crosses over from zero to one is set by the parameter A in
the second term on the right-hand side of Eq. (3). These
are the solutions for an isolated topological defect. The
energy of a topological defect grows logarithmically with
its size and to a good approximation is given by

6=mus’kIn(R/R,) , (6)

where R is the size of the topological defect. This is the
distance to the boundary for the case of an isolated defect
or the distance beyond which the strain field of the defect
is shielded due to the presence of other defects.

We first consider the case of an isolated pair of defects.
The attractive force F, between two defects of opposite
winding number, i.e., s and —s, is [8]

F,=—2ms%/D , (7
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where D is the separation between defects. The time
dependence described by Eq. (1) is viscous relaxation (we
are taking y to be real). Consequently all forces arising
from gradients in the free-energy density will be opposed
by a frictional force of equal magnitude. The friction
force depends logarithmically [9—13] on the defect size
R,

F,=pIn(R/R_ ) , (8)

where v =dD /dt is the magnitude of the velocity of the
defect and u is proportional to ¥. This shows the mobili-
ty I'=v/F depends logarithmically on defect size as

I« (InR)™!. For two coalescing defects, D ~R, giving
for the equation of motion
D |(dD 2ms %k
uln |— |[—F—=—"—"—, 9
HIR, | ar D ©)
which is integrated by parts to give
D 1 2ms’k
D*|ln|—— |—= |=——"—(,—1), 1
[n R, 2 " (tg—1t) (10)

where t is the time of annihilation.

The above expressions for the viscous and elastic forces
acting on a defect are used in the standard scaling argu-
ment to obtain an expression for the growth of the corre-
lation length &, where £ ~R ~ D, with time when the sys-
tem starts out with an initially random vector field n
[14,15]. We need only consider defects with winding
number s =+1 since defects with higher winding number
are unstable, decaying to defects of winding number
|s|=1. If the system is at all times characterized by the
single length scale £ then Eq. (7) gives, for the magnitude
of the characteristic elastic force, F, <k/§. Similarly,
since v=d§&/dt is the characteristic velocity, Eq. (8)
gives, for the magnitude of the characteristic viscous
force, F, <pIn(§/R )d§/dt. Equating the characteristic
elastic force with the characteristic viscous force, and
rearranging terms, gives the following differential equa-
tion:

df _  Ax/p
Sar In({/R,) "’ an

where A is the constant, of order unity, containing the
geometric factors needed to make the proportionalities
equalities. For large &, In(§/R_) varies very slowly with
time and Eq. (11) has the form d£/dt < 1/§ with the scal-
ing solution &2t expected for a system governed by a
diffusion equation. Equation (11) can be integrated by
parts to yield

£
R

1
2

& |In — Lo 24—y, (12)

c

where ¢, is an integration constant. Hence there are log-
arithmic corrections to the diffusive scaling behavior. In
terms of the defect density p=B /&% and the “core densi-
ty” p. =B /R}? this solution takes the form

p _Bur/ddx
In(p,./p)—1 (t—1tg)

s (13)

It is evident that the defect density should scale asymp-
totically as p~t ~!. The approach to this asymptotic re-
gime is slow and may account for the p~¢~%7° scaling
observed at earlier times by previous workers [5,16] in
numerical studies. The logarithmic correction is more
easily seen by determining the time derivative of Eq. (13),
which also eliminates the integration constant #,. Rear-

ranging terms gives

1 |dp |_44k/Bu (14)
p* | dt In(p/p,)

The scaling argument used to generate Egs. (11)—~(14) em-
ploys only the two-body force between a pair of defects
and the viscous force a defect experiences as it moves
through the medium. It is conceivable that many-body
effects could modify the asymptotic behavior of the coar-
sening dynamics. Here we provide numerical evidence to
support the simple picture presented above. An example
of the successful application of these scaling arguments to
a two-dimensional system where the two-body interaction
force and the friction force differ from Eq. (7) and Eq. (8),
respectively, is given in Ref. [17].

In the XY model the phase ¢; at each lattice site i
evolves according to

B S sin(b—b)—
Y g T K2sin(¢—d;) =, (15)
J
where 7; is the Langevin noise at site i. As for Eq. (2),
the Langevin noise has zero mean and the moments

(it (21)) =2k gy 8, ;8¢ —1') . (16)

With the sum in Eq. (15) restricted to a neighborhood
about each lattice site, the sum approximates the V2 term
appearing in Eq. (4). Therefore, the XY model is a discre-
tized version of the Ginzburg-Landau model discussed
above where the core radius of the defects is of the order
of the lattice spacing. The numerical integration pro-
cedure employed by us for Eq. (15) is the Euler update
(18],

¢;(t+At)

=¢,(1)—At ni(t)+$25in[¢,~(t)—¢j(t)] .oan
J

The simulations were performed on a square lattice and
the sum over j was carried out over the eight nearest
neighbors of i. Periodic boundary conditions were im-
posed. We will report the time in number of time steps,
or iterations, N, where t =N At is the dimensionless time.
At each site i the initial phase ¢;(0) was obtained from a
random-number generator whose random numbers are
uniformly distributed between O and 27. The Langevin
noise 7;(¢)=2mcy r; consisted of random numbers r; hav-
ing a uniform distribution over the interval from —0.5 to
0.5. The constants k and ¥ can be scaled away and were
thus taken to be 1. The time step At was taken to be
0.05. No noticeable change was observed in the defect
dynamics when At =0.005. The order-to-disorder transi-
tion was determined to occur near c¢; ~3 where many



47 COARSENING DYNAMICS OF THE XY MODEL 1527

short-lived defect pairs begin to be created. For the runs
reported here, ¢; =2, giving the phase at a given lattice
site an average kick of 9° for each time step. The runs
were performed on a parallel processor containing
128 X 128 4-bit microprocessors (Model MP-1216D; Mas-
Par Computer Corporation). A run out to N =10° itera-
tions required 8 h of central processor time, making
longer runs impractical.

Defect cores were identified by calculating the strain
energy &; at each site i,

6;=3[1—cos(¢;,—¢;)] . (18)
J

If &; was greater than 5 and if §; was a local maximum
at site i, the site was identified as a defect core. At early
times, N <30, when the defect density is high this algo-
rithm undercounts the number of defects by a factor of 2
when compared with other algorithms that determine the
winding number about a site. For N > 100 iterations this
defect identification algorithm works reliably.

Following a standard imaging technique used to study
thin free-standing films of smectic-C liquid crystals [8,19],
in which the film is placed between two polarizers to
make visible the topological defects, we found it useful to
display the phase field ¢; as a Schlieren pattern. The pix-
el representing the site i was shaded using a gray scale
that was proportional to sin*(2¢;). Figure 1 shows a
coarsening sequence displayed as a Schlieren pattern.
Each frame is labeled with the time N in iterations (time
steps). For this run a lattice of 512X 512 was used and,

N =30 000

N =10 000

FIG. 1. A coarsening sequence of annihilating defects, shown
as Schlieren patterns, with the gray scale proportional to
sin’(2¢). The times in iterations after the initially random
configuration label each frame. The Langevin noise was re-
duced to ¢; =1 in this figure for visual clarity.

for purposes of visual clarity, the Langevin noise ampli-
tude was ¢; =1. The defects appear as points from which
four bright brushes emanate. Figure 2 shows the total
number of defects p as a function of time () for various
values of ¢;. All runs were performed on a 1024 X 1024
lattice. The data shown for ¢; =2 (filled circles) is the
average of ten runs; the other curves are averaged over at
least three runs each. For values of ¢; < 1.5 there is pin-
ning of the defects to lattice sites for N >10* For
¢; =22.8 many short-lived defect pairs are generated.
Therefore, the range 1.5<c; <2.8 allows sufficient
Langevin noise to prevent the defects from pinning to the
lattice, without generating significant numbers of defect
pairs.

Figure 3 is a log-log plot of the number of defects
versus time. The data shown are the average of ten runs
with ¢; =2 and a 1024X 1024 lattice. The dashed line
has a slope of —1, the expected diffusive scaling in the
absence of any logarithmic corrections. This also makes
visible the long-time curvature exhibited by the data
when plotted on a log-log scale. It is our contention that
this curvature is due to the logarithmic correction to the
p<t ™! scaling discussed in connection with Eq. (13).
The solid curve is a fit of Eq. (13) to the numerical data
with the fitting parameters given by
p.=(4.28+0.30)X 10° defects, Bu/4 Ax=(2.2440.02)
X 10° defect-iteration, and t,=0. The core density p,
gives a defect core size of R, =0.495+0.018 lattice units
(Lu.), where B=(1024 l.u.)’>. The data show Eq. (13) is
able to adequately account for the long-time curvature
with 0.91£0.005 as the slope of the data during the last
decade. One notes that at times before about 50 itera-
tions there is a deviation from the scaling described in
Eq. (13). We attribute this deviation of the data from the
p Inp scaling to be due to discrete lattice effects where for
more than 10* defects on a (1024)? lattice the average in-
terdefect distance is less than 10 lattice units. We have
observed this behavior in a variety of previous simula-
tions, some employing hexagonal lattices and others con-
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FIG. 2. Defect density vs time for various values of Langevin
noise ¢; . From top to bottom, ¢, =0,0.3,0.5,1,2,2.5.
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FIG. 3. Number of defects vs time since the quench, aver-
aged over ten runs. The dashed line is the expected diffusive
scaling p < ¢~ ! and the solid curve is a fit of Eq. (13) to the data,

exhibiting the logarithmic correction to the scaling, p Inp <z 1.

sisting of discretized versions of Eq. (4) in which next-
nearest neighbors were included in evaluating the gra-
dient term and a A term was included to give the defects a
soft core. Consequently we believe our numerical results
out to 10° iterations are robust and independent of the
detailed algorithms employed. For N <30 we observe an
initial approach to scaling, probably due to the high de-
fect density where the average interdefect distance is on
the order of the core size R,. For times 30 <N <300,
dInp/d Int =~—0.75, similar to the initial, power-law
scaling reported by Mondello and Goldenfeld [5]. How-
ever, our analysis, shown in Eq. (13), indicates this is a
manifestation of p Inp~¢ ~! scaling which arises from the
logarithmic dependence of defect mobility on defect size.
In order to more clearly see the logarithmic depen-
dence we replot, in Fig. 4, the data shown in Fig. 3 as

—(1/p%) dp/dt

10—7 Lol b1 F| |
10! 10? 108 10* 10°
Number of defects

FIG. 4. The data of Fig. 2 replotted to more clearly show the
logarithmic correction to the scaling of the defect density. The
solid line is a fit of the results of the simulation to Eq. (14). In
the absence of the Inp term the data would follow a straight,
horizontal line.

—(1/p*)dp/dt) vs p. In the absence of logarithmic
corrections —(1/p®)(dp/dt), the left-hand side of Eq.
(14), would be constant and independent of p. The
derivative m =dp/dt is obtained by a least-squares fit of
p=mt+a to the data, by minimizing the vertical residu-
als in the neighborhood of the time ¢. This gives the re-
sult dp/dt=[{pt)—{p){t)]/[{t?)—(t){t)] where
the averages are over five data points centered about the
time ¢. The solid curve is a fit of Eq. (14) to the data, us-
ing the same value for p, obtained when fitting to Eq. (13)
and fitting over the same time interval, corresponding to
values of p=<10*. As expected, the value of
Bu/4 Ak=(2.3410.02) X 10° is basically the same.

To demonstrate that the logarithmic correction to the
scaling arises from the logarithmic dependence of the de-
fect mobility on its size we studied the approach, and
subsequent annihilation, of two point defects. The initial
director field of the defect pair, with the +1 (—1) defect
positioned at y =0 and x =a (—a), is specified by

Yy
x +a

1

$=tan"! 24
x

—a

—tan" (19)

at t =0. Langevin noise is included with ¢; =2. Figure 5
is a sequence depicting the approach and annihilation of
a pair of defects. Each frame is labeled with the time be-
fore time of annihilation and, as in Fig. 1, a 512X 512 ar-
ray was used with ¢; =1.

The interdefect separation distance D is plotted versus
time before annihilation in Fig. 6 on a log-log scale. For

N = 68560 N = 10560

N = 1460 N=4

FIG. 5. A sequence showing the approach and final annihila-
tion of a +1 and a — 1 point defect. Each frame is labeled with
the number of iterations before annihilation. For purposes of
visual clarity the Langevin noise was set to ¢, =1 during this
simulation.
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FIG. 6. The interdefect distance vs time for annihilating + 1
and —1 point defects. The diffusive scaling D2« ¢ is shown by
the dashed line. The solid curve is a fit of Eq. (10) to the data
where D?InD « t includes a logarithmic correction.

each run, the annihilation time ¢, was chosen as the time
(N, iterations) when the core identification algorithm,
Eq. (18), first reported the presence of only one core.
This time was typically N,~250000 iterations. The data
shown are an average of 20 runs using a 512X 512 array
and a Langevin noise of ¢; =2. The dashed line is the ex-
pected scaling for a diffusive system, D «(z,—t)%5.
However, Fig. 6 shows the interdefect distance scales
with time according to Eq. (10). The solid curve in Fig. 6
is a fit, over the time interval 30 < Ny— N < 5X 10* itera-
tions, of Eq. (10) to the data. Data from the time interval
5X10*<N,—N <2X 10’ iterations, covering the begin-
ning of the defect coalescence, were excluded from the fit
because this data exhibited transient behavior where the
periodicity of the boundary conditions caused the strain
field to be greatly distorted by the “‘image pairs.” This fit
used the same core size, R, =0.495, as for the defect den-
sity analyses. The other two fitting parameters
were No=3 (iterations) and Ax/p=0.269+0.004
(Lu.?/defect-iteration). The nonzero value of N is a
correction to our value of N, for the annihilation time,
indicating our definition for the annihilation time differs
by only three iterations from the time appropriate for Eq.
(10). The value of Ak/u=0.269 corresponds, with
B=(512 lu.)? to Bu/4Ax=(2.44%0.04)X10°, very
close to the values previously obtained for defect coarsen-
ing. Following the same procedure as before with the

0.25

T

b ol b 0w o by by by

10° 10! 107
Distance (l.u.)

FIG. 7. The data of Fig. S replotted to show the deviation of
D dD /dt from a constant value due to logarithmic corrections.
The solid curve is a fit of Eq. (9) to the data obtained from com-
puter simulations.

coarsening of defects, in Fig. 7 we show the logarithmic
correction more clearly by plotting D dD /dt versus inter-
defect distance D. The solid curve is a fit of Eq. (9) to the
data over the interval, D =3-90 l.u., equivalent to the
same time interval used in Fig. 6. As before, the core size
is forced to be 0.495 l.u. The derivative dD /dt is ob-
tained using the same procedure as that for the derivative
dp/dt, discussed above. Minimizing the vertical residues
gives, for the fitting parameter, Ax/u=0.281%0.008,
corresponding to Bu/4 Ax=(2.32%0.07)X 10°, which
again is similar to the previously obtained values.

Our studies suggest that the transient p«
power-law scaling reported by Mondello and Goldenfeld
[S] is actually due to the logarithmic dependence,
I'~(InR )™}, of the defect mobility I" on defect size R, re-
sulting in the logarithmic scaling, pln(p/p.)~t~!. In
the simulations presented here, performed on a MasPar
computer, it was possible to carry out the simulations
sufficiently far to detect curvature in log,y(p), for defect-
density scaling. Simulations of the coalescence of a de-
fect pair also show curvature in log,,(D), plotted as a
function of log;o(¢, —¢), which is consistent with the scal-
ing D%In(D)~t,—t expected when the size dependence of
the defect mobility is taken into account.

t—0.75
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FIG. 1. A coarsening sequence of annihilating defects, shown
as Schlieren patterns, with the gray scale proportional to
sin’(2¢). The times in iterations after the initially random
configuration label each frame. The Langevin noise was re-
duced to ¢, =1 in this figure for visual clarity.
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FIG. 5. A sequence showing the approach and final annihila-
tion of a +1 and a — 1 point defect. Each frame is labeled with
the number of iterations before annihilation. For purposes of

visual clarity the Langevin noise was set to ¢; =1 during this
simulation.



